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Motivation and goals

Dynamics of systems with focus on contact surfaces
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Plane dynamics of rigid bodies

How?
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Plane dynamics of rigid bodies

Equations of motion for systems with bilateral contacts

@ N rigid bodies with f degrees of freedom:
M(q7 t)q_h(qaqat)zo ERf

M - mass matrix,
q - vector of generalized coordinates,
h - vector of generalized active forces.
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Plane dynamics of rigid bodies

Unilateral contacts

Detachment

Impact
with
friction

Sticking Slipping
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Plane dynamics of rigid bodies

Impact-free case

Number of possible solutions:
4"N ~~ 67 mio.

nN:13

How to avoid time-consuming solution search and rebuilding of the
set of generalized coordinates?

F. Pfeiffer and C. Glocker. Multibody Dynamics with Unilateral Contacts. |\Disk
Editors: A.H. Nayfeh and A.V. Holden, John Wiley & Sons, 1996. JW
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Plane dynamics of rigid bodies

Equations of motion of unilateral-contact free state

R

M(qat)a_h(qaqat) =0 eRf

§
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Plane dynamics of rigid bodies

Contact forces
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Plane dynamics of rigid bodies

Contact forces in generalized space

e Contact force on body A in generalized space
(normal direction):

orr T
Q‘j\’N=< (;CCIA> Fan=J&, -mna-Ax.

@ Sum of contact forces on body A and body B
(normal direction):

N = (JCA na + JC InB> AN = WN AN,

@ Equation of motion of a multibody system with ny concurrent
unilateral contacts:

Ma-h=> Q° = Mg-h-) (wnix+wrir);=0 €R

I'EIN iGIN
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Plane dynamics of rigid bodies

How do we find the missing values?

@ Eqg. of motion in matrix notation

. — A
Mq—h—(WN—i-WGHG WH)<)\E):0 e Rf.

(nx + ng unknown values.)
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Plane dynamics of rigid bodies

Complementarity in the normal direction

NG
0 ANi
>0 N\ =0 gniAni =0

P. Lotstedt. Mechanical systems of rigid bodies subject to unilateral
constraints SIAM J. Appl. Math., 1982. o
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Plane dynamics of rigid bodies

Complementarity in the tangential direction
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Plane dynamics of rigid bodies

Stick/slip/detachment as a linear complementarity problem

y =Ax+b,

y >0, x>0, yIx=0 (yjx; =0).
x,y € Rovtana,
yeg

XS A

R. Cottle and G. Dantzig. Complementary pivot theory of mathematical
programming. Linear Algebra and Appl., 1, 1968. ADISK
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Plane dynamics of rigid bodies

Impacts with friction

INCi .
grci
+pi Anci
A i ATC'
0 NE — i AN 0 ‘
Compression phase
Poisson |} law
Expansion phase
gNEi
gTEi
‘ 2A71s;
| +pi ANEi
‘ ANE: ‘ 0 TE:

enidnci —#i Angi
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Extensions to discretely defined bodies

From analytically to discretely defined bodies

Q g g
O

AN AN
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Extensions to discretely defined bodies

Extensions

@ Collision detection.

@ Automatic generation of kinematical properties of
contact-points.

@ Adaptable time-step with fixed-time-step output.

e Conformable contact dynamics (mechanical en. based).
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Extensions to discretely defined bodies

Collision detection

Object Oriented Bounding Box Tree
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Extensions to discretely defined bodies

Exact collision detection

n detection

%\@0_\
‘bp
Q;Z»

| ¥




Multibody simulations
0000®00

Extensions to discretely defined bodies

Changing of the time-step
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Extensions to discretely defined bodies

Flowchart

Next time-step
(Runge-Kutta)

Next time-step

00000 e0

Try to increase
time-step

Compression
(LCP)

Expansion
(LCP)

Stick/slip/detachment

Exception

Decrease time-step

Go to last successful
time-step
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Extensions to discretely defined bodies

Implementation
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(Used open source resources:

Multibody Dynamics Simulator

Packages for
manipulating symbolic
expressions

written in Mathematica.

Object oriented

multithreaded code
written in Borland Delphi.

GLScene, ParseExpr.)
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Woodpecker toy

Multibody Dynamics
with Unilateral Contacts

F. Pfeiffer and C. Glocker, 1996
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Woodpecker toy

Mathematical model

M
a= | ¢em
¥S

myp + mg I mg Ig mg
M = v mg Mt Bims g hams
Ig mg Ighims  Js+1gms

—g (mg + myp)
h = —g I\ mg + cp pg — Cp PM

—glg mg = cp v5 + o oM

0 1
wN,1 = 0 wp = M
—hg g =1s

WN,3 =
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Woodpecker toy

Virtual bodies
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Woodpecker toy

Simulation of 3 and 4 DOF models

Phase plots for g
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Published in: Proc. IMechE - Part C: J. Mech. Eng. Science

SLAVIC, Janko, BOLTEzAR, Miha. Nonlinearity and non-smoothness in
multi body dynamics: application to woodpecker toy. In Press.
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Brazil nut effect

Granular materials:
The brazil nut effect — in reverse

T. Shinbrot, Nature 2004
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Brazil nut effect

What is it?
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Brazil nut effect

Rate of surface asperity influence
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Sliding contact of a graphite pin

Domel d.d.
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Sliding contact of a graphite pin

What defines the dynamics of the graphite pin?
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Sliding contact of a graphite pin

Experimental work

Coefficient of friction (T, 1, s) Stiffness (T, /), damp. (T)
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Sliding contact of a graphite pin

Instantaneous direct measurement of coefficient of friction

Key features of the new method:

0.2

. 18\ @ direct measurement

0.16; \ M @ dynamic forces
=o0.14 ;” { @ temperature and current
=8 - .

0.12 \ &1 W,‘l / density influences

o s @W /P @ possibility to check the

- y prepositions:
0.08 120 140 160 180 .
Temp C] o COF independent of Fy,

o axial direction negligible.

Published in: Wear

SLAVIC, Janko, BOLTEZAR, Miha. Measuring the dynamic forces to ADISK
graphite-copper contact for variable temperature and current. In Press.
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Sliding contact of a graphite pin

Stiffness of graphite/epoxy

50 160 150 2060 Z50
Temp [*C]

C11 =177 GPa, Clz =907 GPa,
Ci3 = 9.7 GPa, Gzz3 = 17.7 GPa, :
Cas = 4.0 GPa. = SRS =°

Published in: Journal of Sound and Vibration

SLAVIC, Janko, SIMONOVSKI, Igor, BOLTEZAR, Miha. Damping
identification transform: Application to real data. 2003.

Published in: Mech. syst. signal process.

BOLTEZAR, Miha, SLAVIC, Janko. Enhancements to the continuous wavelet
transform for damping identifications on short signals. 2004.
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Sliding contact of a graphite pin

Conformable contact dynamics
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Sliding contact of a graphite pin

Re-shaping of the contact surface

Initial shape After several re-shapings
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672mm In agreement with experimental observations:

@ increase of the radius of curvature,

@ shift of the center of curvature.




Sliding contact of a graphite pin

Understanding the measured coefficient of friction

Number of contact points
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Contribution
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Contribution

Scientific contribution

WL
L Ak
Y Y Y

o Extension of the Pfeiffer-Glocker formulation to \

discretely defined bodies.
@ Introduction of virtual bodies.

@ Formulation of loss of mechanical energy at §M
contacts. N

@ Experimental method: measuring COF. \
@ Detailed analysis of friction of a sliding pin.

@ Conformable contact dynamics.

]\%
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Contribution

Industrial application

A

Electric-motor-brush dynamics:

@ 8 rigid bodies,

@ 11 degrees of freedom,
@ 46 parameters,
@ Monte Carlo:

m 3400+ simulations.

SLAVIC, Janko, Nastran, Miha, BOLTEZAR, Miha. Modeling and
analysis of the dynamics of an electric-motor brush. In Press.

New design for enhancing the quality of brush-commutator contact.

In preparation.
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Contribution

Thank you for your attention
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